

 Navigation

 	
 index

 	
 next |

 	Behat documentation

Behat Documentation

Behat is an open source Behavior Driven Development framework for PHP 5.3+.
What’s behavior driven development, you ask? It’s a way to develop software
through a constant communication with stakeholders in form of examples;
examples of how this software should help them, and you, to achieve your goals.

For example, imagine you’re about to create the famous UNIX ls command.
Before you begin, you will have a conversation with your stakeholders (UNIX
users) and they might say that even though they like UNIX a lot, they need a
way to see all the files in the current working directory. You then have
a back-and-forth chat with them about how they see this feature
working and you come up with your first scenario (an alternative name for example
in BDD methodology):

Feature: Listing command
 In order to change the structure of the folder I am currently in
 As a UNIX user
 I need to be able see the currently available files and folders there

 Scenario: Listing two files in a directory
 Given I am in a directory "test"
 And I have a file named "foo"
 And I have a file named "bar"
 When I run "ls"
 Then I should get:
 """
 bar
 foo
 """

If you are a stakeholder, this is your proof that developers understand
exactly how you want this feature to work. If you are a developer, this is your
proof that the stakeholder expects you to implement this feature exactly in the
way you’re planning to implement it.

So, as a developer your work is done as soon as you’ve made the ls
command, and made it behave as described in the “Listing command” scenario.

You’ve probably heard about this modern development practice called TDD, where
you write tests for your code before, not after, the code. Well, BDD is like
that, except that you don’t need to come up with a test - your scenarios are
your tests. That’s exactly what Behat does! As you’ll see, Behat is easy to
learn, quick to use, and will put the fun back into your testing.

Behaviour Driven Development

Once you’re up and running with Behat, you can learn more about behaviour
driven development via the following links. Though both tutorials are specific
to Cucumber, Behat shares a lot with Cucumber and the philosophies are one
and the same.

	Dan North’s “What’s in a Story?” [http://dannorth.net/whats-in-a-story]

	Cucumber’s “Backgrounder” [https://github.com/cucumber/cucumber/wiki/Cucumber-Backgrounder]

Note

Behat was heavily inspired by Ruby’s Cucumber [http://cukes.info/] project. Since v3.0,
Behat is considered an official Cucumber implementation in PHP and is part
of one big family of BDD tools.

 Copyright 2016, Konstantin Kudryashov (@everzet).
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Behat documentation

Quick Start

Welcome to Behat! Behat is a tool to close the Behavior Driven Development [http://en.wikipedia.org/wiki/Behavior_Driven_Development]
(BDD) communication loop. BDD is a methodology for developing software through
continuous example-based communication between developers and a business,
which this application supports. This communication happens in a form that
both the business and developers can clearly understand - examples. Examples are
structured around the Context-Action-Outcome pattern and are written in a
special format called Gherkin. The fact that Gherkin is very structural
makes it very easy to automate and autotest your behaviour examples against
a developing application. Automated examples are then actually used to drive
this application development TDD-style.

To become a Behat’er in 30 minutes, just dive into the quick-start guide and
enjoy!

Example

Let’s imagine that you are building a completely new e-commerce platform.
One of the key features of any online shopping platform is the ability to buy
products. But before buying anything, customers should be able to tell the
system which products they are interested in buying. You need a basket.
So let’s write our first user-story:

Feature: Product basket
 In order to buy products
 As a customer
 I need to be able to put interesting products into a basket

Note

This is a basic Gherkin feature and it is a simple description of
this feature’s story. Every feature starts with this same format: a
line with the title of the feature, followed by three lines that
describe the benefit, the role and the feature itself with any
amount of additional description lines following after.

Before we begin to work on this feature, we must fulfil a promise of any
user-story and have a real conversation with our business stakeholders.
They might say that they want customers to see not only the combined
price of the products in the basket, but the price reflecting both the
VAT (20%) and the delivery cost (which depends on the total price of
the products):

Feature: Product basket
 In order to buy products
 As a customer
 I need to be able to put interesting products into a basket

 Rules:
 - VAT is 20%
 - Delivery for basket under £10 is £3
 - Delivery for basket over £10 is £2

So as you can see, it already becomes tricky (ambiguous at least) to talk
about this feature in terms of rules. What does it mean to add VAT? What
happens when we have two products, one of which is less than £10 and another
that is more? Instead you proceed with having a back-and-forth chat with
stakeholders in form of actual examples of a customer adding products to
the basket. After some time, you will come up with your first behaviour
examples (in BDD these are called scenarios):

Feature: Product basket
 In order to buy products
 As a customer
 I need to be able to put interesting products into a basket

 Rules:
 - VAT is 20%
 - Delivery for basket under £10 is £3
 - Delivery for basket over £10 is £2

 Scenario: Buying a single product under £10
 Given there is a "Sith Lord Lightsaber", which costs £5
 When I add the "Sith Lord Lightsaber" to the basket
 Then I should have 1 product in the basket
 And the overall basket price should be £9

 Scenario: Buying a single product over £10
 Given there is a "Sith Lord Lightsaber", which costs £15
 When I add the "Sith Lord Lightsaber" to the basket
 Then I should have 1 product in the basket
 And the overall basket price should be £20

 Scenario: Buying two products over £10
 Given there is a "Sith Lord Lightsaber", which costs £10
 And there is a "Jedi Lightsaber", which costs £5
 When I add the "Sith Lord Lightsaber" to the basket
 And I add the "Jedi Lightsaber" to the basket
 Then I should have 2 products in the basket
 And the overall basket price should be £20

Note

Each scenario always follows the same basic format:

Scenario: Some description of the scenario
 Given some context
 When some event
 Then outcome

Each part of the scenario - the context, the event, and the
outcome - can be extended by adding the And or But keyword:

Scenario: Some description of the scenario
 Given some context
 And more context
 When some event
 And second event occurs
 Then outcome
 And another outcome
 But another outcome

There’s no actual difference between, Then, And But or any
of the other words that start each line. These keywords are all made
available so that your scenarios are natural and readable.

This is your and your stakeholders’ shared understanding of the project written
in a structured format. It is all based on the clear and constructive
conversation you have had together. Now you can put this text in a simple file -
features/basket.feature - under your project directory and start
implementing the feature by manually checking if it fits the defined scenarios.
No tools (Behat in our case) needed. That, in essence, is what BDD is.

If you are still reading, it means you are expecting more. Good! Because
even though tools are not the central piece of BDD puzzle, they do improve
the entire process and add a lot of benefits on top of it. For one, tools
like Behat actually do close the communication loop of the story. It means
that not only you and your stakeholder can together define how your
feature should work before going to implement it, BDD tools allow you to
automate that behaviour check after this feature is implemented. So everybody
knows when it is done and when the team can stop writing code. That, in
essence, is what Behat is.

Behat is an executable that you’ll run from the command line to test that your
application behaves exactly as you described in your *.feature scenarios.

Going forward, we’ll show you how Behat can be used to automate this particular
basket feature as a test verifying that the application (existing or not)
works as you and your stakeholders expect (according to your conversation) it
to.

That’s it! Behat can be used to automate anything, including web-related
functionality via the Mink [https://github.com/behat/mink] library.

Note

If you want to learn more about the philosophy of “Behaviour Driven
Development” of your application, see What’s in a Story? [http://blog.dannorth.net/whats-in-a-story/]

Note

Behat was heavily inspired by Ruby’s Cucumber [http://cukes.info/] project. Since v3.0,
Behat is considered an official Cucumber implementation in PHP and is part
of one big family of BDD tools.

Installation

Before you begin, ensure that you have at least PHP 5.3.3 installed.

Method #1 - Composer (the recommended one)

The official way to install Behat is through Composer. Composer is a package
manager for PHP. Not only can it install Behat for you right now, it will be
able to easily update you to the latest version later when one comes out. If
you don’t have Composer already, see
the Composer documentation [https://getcomposer.org/download/] for
instructions. After that, just go into your project directory (or create a
new one) and run:

$ php composer.phar require --dev behat/behat

Then you will be able to check installed Behat version using:

$ vendor/bin/behat -V

Method #2 - PHAR (an easy one)

An easier way to install Behat is to grab a latest behat.phar from
the download page [https://github.com/Behat/Behat/releases]. Make sure
that you download a 3+ release. After downloading it, just place it in
your project folder (or create a new one) and check the installed version using:

$ php behat.phar -V

Development

Now we will use our newly installed Behat to automate our previously written
feature under the features/basket.feature.

Our first step after describing the feature and installing Behat is configuring
the test suite. A test suite is a key concept in Behat. Suites are a way for Behat
to know where to find and how to test your application against your features.
By default, Behat comes with a default suite, which tells Behat to search
for features under the features/ folder and test them using FeatureContext
class. Lets initialise this suite:

$ vendor/bin/behat --init

Note

If you installed Behat via PHAR, use php behat.phar instead of
vendor/bin/behat in the rest of this article.

The --init command tells Behat to provide you with things missing
to start testing your feature. In our case - it’s just a FeatureContext
class under the features/bootstrap/FeatureContext.php file.

Executing Behat

I think we’re ready to see Behat in action! Let’s run it:

$ vendor/bin/behat

You should see that Behat recognised that you have 3 scenarios. Behat should
also tell you that your FeatureContext class has missing steps and proposes
step snippets for you. FeatureContext is your test environment. It is an
object through which you will describe how you would test your application against
your features. It was generated by the --init command and now looks like this:

// features/bootstrap/FeatureContext.php

use Behat\Behat\Context\SnippetAcceptingContext;
use Behat\Gherkin\Node\PyStringNode;
use Behat\Gherkin\Node\TableNode;

class FeatureContext implements SnippetAcceptingContext
{
 /**
 * Initializes context.
 */
 public function __construct()
 {
 }
}

Defining Steps

Finally, we got to the automation part. How does Behat know what to do
when it sees Given there is a "Sith Lord Lightsaber", which costs £5? You
tell it. You write PHP code inside your context class (FeatureContext
in our case) and tell Behat that this code represents a specific scenario step
(via an annotation with a pattern):

/**
 * @Given there is a(n) :arg1, which costs £:arg2
 */
public function thereIsAWhichCostsPs($arg1, $arg2)
{
 throw new PendingException();
}

Note

/** ... */ is a special syntax in PHP called a doc-block. It is
discoverable at runtime and used by different PHP frameworks as a
way to provide additional meta-information for the classes, methods and
functions. Behat uses doc-blocks for step definitions, step
transformations and hooks.

@Given there is a(n) :arg1, which costs £:arg2 above the method tells Behat
that this particular method should be executed whenever Behat sees step that
looks like ... there is a ..., which costs £.... This pattern will match
any of the following steps:

Given there is a "Sith Lord Lightsaber", which costs £5
When there is a "Sith Lord Lightsaber", which costs £10
Then there is an 'Anakin Lightsaber', which costs £10
And there is a Lightsaber, which costs £2
But there is a Lightsaber, which costs £25

Not only that, but Behat will capture tokens (words starting with :, e.g.
:arg1) from the step and pass their value to the method as arguments:

// Given there is a "Sith Lord Lightsaber", which costs £5
$context->thereIsAWhichCostsPs('Sith Lord Lightsaber', '5');

// Then there is a 'Jedi Lightsaber', which costs £10
$context->thereIsAWhichCostsPs('Jedi Lightsaber', '10');

// But there is a Lightsaber, which costs £25
$context->thereIsAWhichCostsPs('Lightsaber', '25');

Note

If you need to define more complex matching algorithms, you can also use regular
expressions:

/**
 * @Given /there is an? \"([^\"]+)\", which costs £([\d\.]+)/
 */
public function thereIsAWhichCostsPs($arg1, $arg2)
{
 throw new PendingException();
}

Those patterns could be quite powerful, but at the same time, writing them for all
possible steps manually could become extremely tedious and boring. That’s why Behat
does it for you. Remember when you previously executed vendor/bin/behat you
got:

--- FeatureContext has missing steps. Define them with these snippets:

 /**
 * @Given there is a :arg1, which costs £:arg2
 */
 public function thereIsAWhichCostsPs($arg1, $arg2)
 {
 throw new PendingException();
 }

Behat automatically generates snippets for missing steps and all that you need to
do is copy and paste them into your context classes. Or there is an even easier
way - just run:

$ vendor/bin/behat --dry-run --append-snippets

And Behat will automatically append all the missing step methods into your
FeatureContext class. How cool is that?

If you executed --append-snippets, your FeatureContext should look like:

// features/bootstrap/FeatureContext.php

use Behat\Behat\Tester\Exception\PendingException;
use Behat\Behat\Context\SnippetAcceptingContext;
use Behat\Gherkin\Node\PyStringNode;
use Behat\Gherkin\Node\TableNode;

class FeatureContext implements SnippetAcceptingContext
{
 /**
 * @Given there is a :arg1, which costs £:arg2
 */
 public function thereIsAWhichCostsPs($arg1, $arg2)
 {
 throw new PendingException();
 }

 /**
 * @When I add the :arg1 to the basket
 */
 public function iAddTheToTheBasket($arg1)
 {
 throw new PendingException();
 }

 /**
 * @Then I should have :arg1 product(s) in the basket
 */
 public function iShouldHaveProductInTheBasket($arg1)
 {
 throw new PendingException();
 }

 /**
 * @Then the overall basket price should be £:arg1
 */
 public function theOverallBasketPriceShouldBePs($arg1)
 {
 throw new PendingException();
 }
}

Note

We have removed the constructor and grouped I should have :arg1 product in the basket
and I should have :arg1 products in the basket into one
I should have :arg1 product(s) in the basket.

Automating Steps

Now it is finally time to start implementing our basket feature. The approach when
you use tests to drive your application development is called a Test-Driven Development
(or simply TDD). With TDD you start by defining test cases for the functionality you
develop, then you fill these test cases with the best-looking application code you could
come up with (use your design skills and imagination).

In the case of Behat, you already have defined test cases (step definitions in your
FeatureContext) and the only thing that is missing is that best-looking application
code we could come up with to fulfil our scenario. Something like this:

// features/bootstrap/FeatureContext.php

use Behat\Behat\Tester\Exception\PendingException;
use Behat\Behat\Context\SnippetAcceptingContext;
use Behat\Gherkin\Node\PyStringNode;
use Behat\Gherkin\Node\TableNode;

class FeatureContext implements SnippetAcceptingContext
{
 private $shelf;
 private $basket;

 public function __construct()
 {
 $this->shelf = new Shelf();
 $this->basket = new Basket($this->shelf);
 }

 /**
 * @Given there is a :product, which costs £:price
 */
 public function thereIsAWhichCostsPs($product, $price)
 {
 $this->shelf->setProductPrice($product, floatval($price));
 }

 /**
 * @When I add the :product to the basket
 */
 public function iAddTheToTheBasket($product)
 {
 $this->basket->addProduct($product);
 }

 /**
 * @Then I should have :count product(s) in the basket
 */
 public function iShouldHaveProductInTheBasket($count)
 {
 PHPUnit_Framework_Assert::assertCount(
 intval($count),
 $this->basket
);
 }

 /**
 * @Then the overall basket price should be £:price
 */
 public function theOverallBasketPriceShouldBePs($price)
 {
 PHPUnit_Framework_Assert::assertSame(
 floatval($price),
 $this->basket->getTotalPrice()
);
 }
}

As you can see, in order to test and implement our application, we introduced 2 objects -
Shelf and Basket. The first is responsible for storing products and their prices,
the second is responsible for the representation of our customer basket. Through appropriate step
definitions we declare products’ prices and add products to the basket. We then compare the
state of our Basket object with our expectations using PHPUnit assertions.

Note

Behat doesn’t come with its own assertion tool, but you can use any proper assertion
tool out there. A proper assertion tool is a library whose assertions throw
exceptions on failure. For example, if you’re familiar with PHPUnit you can use
its assertions in Behat by installing it via composer:

$ php composer.phar require --dev phpunit/phpunit

and then by simply using assertions in your steps:

PHPUnit_Framework_Assert::assertCount(
 intval($count),
 $this->basket
);

Now try to execute your feature tests:

$ vendor/bin/behat

You should see a beginning of the feature and then an error saying that class Shelf
does not exist. It means we’re ready to start writing actual application code!

Implementing the Feature

So now we have 2 very important things:

	A concrete user-aimed description of functionality we’re trying to deliver.

	Set of failing tests that tell us what to do next.

Now is the easiest part of application development - feature implementation. Yes, with
TDD and BDD implementation becomes a routine task, because you already did most of the
job in the previous phases - you wrote tests, you came up with an elegant solution (as far
as you could go in current context) and you chose the actors (objects) and actions
(methods) that are involved. Now it’s time to write a bunch of PHP keywords to glue it
all together. Tools like Behat, when used in the right way, will help you to write this
phase by giving you a simple set of instructions that you need to follow. You
did your thinking and design, now it’s time to sit back, run the tool and follow its
instructions in order to write your production code.

Lets start! Run:

$ vendor/bin/behat

Behat will try to test your application with FeatureContext but will fail soon,
producing something like this onto your screen:

Fatal error: Class 'Shelf' not found

Now our job is to reinterpret this phrase into an actionable instruction. Like
“Create the Shelf class”. Let’s go and create it inside features/bootstrap:

// features/bootstrap/Shelf.php

final class Shelf
{
}

Note

We put the Shelf class into features/bootstrap/Shelf.php because
features/bootstrap is an autoloading folder for Behat. Behat has a built-in
PSR-0 autoloader, which looks into features/bootstrap. If you’re developing
your own application, you probably would want to put classes into a place
appropriate for your app.

Let’s run Behat again:

$ vendor/bin/behat

We will get different message on our screen:

Fatal error: Class 'Basket' not found

Good, we are progressing! Reinterpreting the message as, “Create the Basket class”.
Let’s follow our new instruction:

// features/bootstrap/Basket.php

final class Basket
{
}

Run Behat again:

$ vendor/bin/behat

Great! Another “instruction”:

Call to undefined method Shelf::setProductPrice()

Follow these instructions step-by-step and you will end up with Shelf
class looking like this:

// features/bootstrap/Shelf.php

final class Shelf
{
 private $priceMap = array();

 public function setProductPrice($product, $price)
 {
 $this->priceMap[$product] = $price;
 }

 public function getProductPrice($product)
 {
 return $this->priceMap[$product];
 }
}

and Basket class looking like this:

// features/bootstrap/Basket.php

final class Basket implements \Countable
{
 private $shelf;
 private $products;
 private $productsPrice = 0.0;

 public function __construct(Shelf $shelf)
 {
 $this->shelf = $shelf;
 }

 public function addProduct($product)
 {
 $this->products[] = $product;
 $this->productsPrice += $this->shelf->getProductPrice($product);
 }

 public function getTotalPrice()
 {
 return $this->productsPrice
 + ($this->productsPrice * 0.2)
 + ($this->productsPrice > 10 ? 2.0 : 3.0);
 }

 public function count()
 {
 return count($this->products);
 }
}

Run Behat again:

$ vendor/bin/behat

All scenarios should pass now! Congratulations, you almost finished your first
feature. The last step is to refactor. Look at the Basket and Shelf
classes and try to find a way to make their code even more cleaner, easier to
read and concise.

Tip

I would recommend starting from Basket::getTotalPrice() method and
extracting VAT and delivery cost calculation in private methods.

After refactoring is done, you will have:

	Clearly designed and obvious code that does exactly the thing it should do
without any gold plating.

	A regression test suite that will help you to be confident in your code going
forward.

	Living documentation for the behaviour of your code that will live, evolve and
die together with your code.

	An incredible level of confidence in your code. Not only are you confident now
that it does exactly what it’s supposed to do, you are confident that it does
so by delivering value to the final users (customers in our case).

There are many more benefits to BDD but those are the key reasons why most BDD
practitioners do BDD in Ruby, .Net, Java, Python and JS. Welcome to the family!

What’s Next?

Congratulations! You now know everything you need in order to get started
with behavior driven development and Behat. From here, you can learn more
about the Gherkin syntax or learn how to
test your web applications by using Behat with Mink.

 Copyright 2016, Konstantin Kudryashov (@everzet).
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Behat documentation

User Guide

	The Gherkin Language
	Gherkin Syntax

	Gherkin in Many Languages

	Features and Scenarios
	Features

	Scenarios

	Initialize a New Behat Project
	Suite Initialisation

	Writing Scenarios
	Steps

	Backgrounds

	Scenario Outlines

	Tables

	Multiline Arguments

	Pystrings

	Organizing Features and Scenarios
	Tags

	Testing Features
	Hooking into the Test Process

	Defining Reusable Actions

	Context Class Requirements

	Contexts Lifetime

	Multiple Contexts

	Context Parameters

	Context Traits

	Command Line Tool
	Identifying Tests

	Format Options

	Informative Output

	Configuration
	Configuring Test Suites

	behat.yml

	Overriding default params

	Environment Variable - BEHAT_PARAMS

	Global Filters

	Custom Autoloading

	Formatters

	Extensions

 Copyright 2016, Konstantin Kudryashov (@everzet).
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Behat documentation

 	User Guide

The Gherkin Language

Behat is a tool to test the behavior of your application, described in a special
language called Gherkin. Gherkin is a
Business Readable, Domain Specific Language [http://martinfowler.com/bliki/BusinessReadableDSL.html]
created specifically for behavior descriptions. It gives you the ability to
remove logic details from behavior tests.

Gherkin serves as your project’s documentation as well as your project’s
automated tests. Behat also has a bonus feature: It talks back to you using
real, human language telling you what code you should write.

Tip

If you’re still new to Behat, jump into the Quick Start first,
then return here to learn more about Gherkin.

Gherkin Syntax

Like YAML and Python, Gherkin is a whitespace-oriented language that uses
indentation to define structure. Line endings terminate statements (called
steps) and either spaces or tabs may be used for indentation (we suggest you
use spaces for portability). Finally, most lines in Gherkin start with a
special keyword:

Feature: Some terse yet descriptive text of what is desired
 In order to realize a named business value
 As an explicit system actor
 I want to gain some beneficial outcome which furthers the goal

 Additional text...

 Scenario: Some determinable business situation
 Given some precondition
 And some other precondition
 When some action by the actor
 And some other action
 And yet another action
 Then some testable outcome is achieved
 And something else we can check happens too

 Scenario: A different situation
 ...

The parser divides the input into features, scenarios and steps. Let’s walk
through the above example:

	Feature: Some terse yet descriptive text of what is desired starts
the feature and gives it a title. Learn more about “Features”.

	The next three lines (In order to ..., As an ..., I want to
...) provide context to the people reading your feature and describe the
business value derived from the inclusion of the feature in your software.
These lines are not parsed by Behat and don’t have a required structure.

	Scenario: Some determinable business situation starts the scenario
and contains a description of the scenario. Learn more about
“Scenarios”.

	The next 7 lines are the scenario steps, each of which is matched to
a pattern defined elsewhere. Learn more about
“Steps”.

	Scenario: A different situation starts the next scenario and so on.

When you’re executing the feature, the trailing portion of each step (after
keywords like Given, And, When, etc) is matched to
a pattern, which executes a PHP callback function. You can read more about
steps matching and execution in “Defining Reusable Actions”.

Gherkin in Many Languages

Gherkin is available in many languages, allowing you to write stories
using localized keywords from your language. In other words, if you
speak French, you can use the word Fonctionnalité instead of Feature.

To check if Behat and Gherkin support your language (for example, French),
run:

behat --story-syntax --lang=fr

Note

Keep in mind that any language different from en should be explicitly
marked with a # language: ... comment at the beginning of your
*.feature file:

language: fr
Fonctionnalité: ...
 ...

This way your features will hold all the information about its content
type, which is very important for methodologies like BDD and also gives
Behat the ability to have multilanguage features in one suite.

 Copyright 2016, Konstantin Kudryashov (@everzet).
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Behat documentation

 	User Guide

Features and Scenarios

Features

Every *.feature file conventionally consists of a single feature. Lines
starting with the keyword Feature: (or its localized equivalent) followed
by three indented lines starts a feature. A feature usually contains a list of
scenarios. You can write whatever you want up until the first scenario, which
starts with Scenario: (or localized equivalent) on a new line. You can use
Tags to group features
and scenarios together, independent of your file and directory structure.

Every scenario consists of a list of
Steps, which must start with one of the
keywords Given, When, Then, But or And (or a localized
version of one of these). Behat treats them all the same, but you shouldn’t.
Here is an example:

Feature: Serve coffee
 In order to earn money
 Customers should be able to
 buy coffee at all times

 Scenario: Buy last coffee
 Given there are 1 coffees left in the machine
 And I have deposited 1 dollar
 When I press the coffee button
 Then I should be served a coffee

In addition to basic Scenarios,
features may contain Scenario Outlines and
Backgrounds.

Scenarios

Scenarios are one of the core Gherkin structures. Every scenario starts with
the Scenario: keyword (or localized keyword), followed by an optional scenario
title. Each feature can have one or more scenarios and every scenario consists
of one or more Steps.

The following scenarios each have 3 steps:

Scenario: Wilson posts to his own blog
 Given I am logged in as Wilson
 When I try to post to "Expensive Therapy"
 Then I should see "Your article was published."

Scenario: Wilson fails to post to somebody else's blog
 Given I am logged in as Wilson
 When I try to post to "Greg's anti-tax rants"
 Then I should see "Hey! That's not your blog!"

Scenario: Greg posts to a client's blog
 Given I am logged in as Greg
 When I try to post to "Expensive Therapy"
 Then I should see "Your article was published."

 Copyright 2016, Konstantin Kudryashov (@everzet).
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Behat documentation

 	User Guide

Initialize a New Behat Project

The easiest way to start using Behat in your project is to call behat
with the --init option inside your project directory:

$ vendor/bin/behat --init

After you run this command, Behat will set up a features directory
inside your project:

The newly created features/bootstrap/FeatureContext.php will have
an initial context class to get you started:

// features/bootstrap/FeatureContext.php

use Behat\Behat\Context\SnippetAcceptingContext;
use Behat\Gherkin\Node\PyStringNode;
use Behat\Gherkin\Node\TableNode;

class FeatureContext implements SnippetAcceptingContext
{
 /**
 * Initializes context.
 */
 public function __construct()
 {
 }
}

All
step definitions
and Hooks
necessary for testing your project against your features will be represented as
methods inside this class.

Suite Initialisation

Suites are a core part of Behat. Any feature of Behat knows about
them and can give you a hand with them. For example, if you defined
your suites in behat.yml before running --init, it will actually
create the folders and suites you configured, instead of the default ones.

 Copyright 2016, Konstantin Kudryashov (@everzet).
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Behat documentation

 	User Guide

Writing Scenarios

Steps

Features consist of steps, also known as
Givens, Whens and Thens.

Behat doesn’t technically distinguish between these three kind of steps.
However, we strongly recommend that you do! These words have been carefully
selected for their purpose and you should know what the purpose is to get into
the BDD mindset.

Robert C. Martin has written a great post [https://sites.google.com/site/unclebobconsultingllc/the-truth-about-bdd] about BDD’s Given-When-Then concept
where he thinks of them as a finite state machine.

Givens

The purpose of the Given steps is to put the system in a known state before
the user (or external system) starts interacting with the system (in the When
steps). Avoid talking about user interaction in givens. If you have worked with
use cases, givens are your preconditions.

Given Examples

Two good examples of using Givens are:

	To create records (model instances) or set up the database:

Given there are no users on site
Given the database is clean

	Authenticate a user (an exception to the no-interaction recommendation.
Things that “happened earlier” are ok):

Given I am logged in as "Everzet"

Tip

It’s OK to call into the layer “inside” the UI layer here (in Symfony: talk
to the models).

Using Givens as Data Fixtures

If you use ORMs like Doctrine or Propel, we recommend using a Given step
with a tables argument to set up records instead of fixtures. This
way you can read the scenario all in one place and make sense out of it
without having to jump between files:

Given there are users:
username	password	email
everzet	123456	everzet@knplabs.com
fabpot	22@222	fabpot@symfony.com

Whens

The purpose of When steps is to describe the key action the user
performs (or, using Robert C. Martin’s metaphor, the state transition).

When Examples

Two good examples of using Whens are:

	Interact with a web page (the Mink library gives you many web-friendly
When steps out of the box):

When I am on "/some/page"
When I fill "username" with "everzet"
When I fill "password" with "123456"
When I press "login"

	Interact with some CLI library (call commands and record output):

When I call "ls -la"

Thens

The purpose of Then steps is to observe outcomes. The observations
should be related to the business value/benefit in your feature description.
The observations should inspect the output of the system (a report, user
interface, message, command output) and not something deeply buried inside it
(that has no business value and is instead part of the implementation).

Then Examples

Two good examples of using Thens are:

	Verify that something related to the Given + When is (or is not) in the
output:

When I call "echo hello"
Then the output should be "hello"

	Check that some external system has received the expected message:

When I send an email with:
 """
 ...
 """
Then the client should receive the email with:
 """
 ...
 """

Caution

While it might be tempting to implement Then steps to just look in the
database – resist the temptation. You should only verify output that is
observable by the user (or external system). Database data itself is
only visible internally to your application, but is then finally exposed
by the output of your system in a web browser, on the command-line or an
email message.

And & But

If you have several Given, When or Then steps you can write:

Scenario: Multiple Givens
 Given one thing
 Given another thing
 Given yet another thing
 When I open my eyes
 Then I see something
 Then I don't see something else

Or you can use And or But steps, allowing your Scenario to read more
fluently:

Scenario: Multiple Givens
 Given one thing
 And another thing
 And yet another thing
 When I open my eyes
 Then I see something
 But I don't see something else

Behat interprets steps beginning with And or But exactly the same as all other
steps; it doesn’t differentiate between them - you should!

Backgrounds

Backgrounds allows you to add some context to all scenarios in a single
feature. A Background is like an untitled scenario, containing a number of
steps. The difference is when it is run: the background is run before each of
your scenarios, but after your BeforeScenario
Hooks.

Feature: Multiple site support

 Background:
 Given a global administrator named "Greg"
 And a blog named "Greg's anti-tax rants"
 And a customer named "Wilson"
 And a blog named "Expensive Therapy" owned by "Wilson"

 Scenario: Wilson posts to his own blog
 Given I am logged in as Wilson
 When I try to post to "Expensive Therapy"
 Then I should see "Your article was published."

 Scenario: Greg posts to a client's blog
 Given I am logged in as Greg
 When I try to post to "Expensive Therapy"
 Then I should see "Your article was published."

Scenario Outlines

Copying and pasting scenarios to use different values can quickly become
tedious and repetitive:

Scenario: Eat 5 out of 12
 Given there are 12 cucumbers
 When I eat 5 cucumbers
 Then I should have 7 cucumbers

Scenario: Eat 5 out of 20
 Given there are 20 cucumbers
 When I eat 5 cucumbers
 Then I should have 15 cucumbers

Scenario Outlines allow us to more concisely express these examples through the
use of a template with placeholders:

Scenario Outline: Eating
 Given there are <start> cucumbers
 When I eat <eat> cucumbers
 Then I should have <left> cucumbers

 Examples:
 | start | eat | left |
 | 12 | 5 | 7 |
 | 20 | 5 | 15 |

The Scenario Outline steps provide a template which is never directly run. A
Scenario Outline is run once for each row in the Examples section beneath it
(except for the first header row).

The Scenario Outline uses placeholders, which are contained within
< > in the Scenario Outline’s steps. For example:

Given <I'm a placeholder and I'm ok>

Think of a placeholder like a variable. It is replaced with a real value from
the Examples: table row, where the text between the placeholder angle
brackets matches that of the table column header. The value substituted for
the placeholder changes with each subsequent run of the Scenario Outline,
until the end of the Examples table is reached.

Tip

You can also use placeholders in Multiline Arguments.

Note

Your step definitions will never have to match the placeholder text itself,
but rather the values replacing the placeholder.

So when running the first row of our example:

Scenario Outline: Eating
 Given there are <start> cucumbers
 When I eat <eat> cucumbers
 Then I should have <left> cucumbers

 Examples:
 | start | eat | left |
 | 12 | 5 | 7 |

The scenario that is actually run is:

Scenario: Eating
 # <start> replaced with 12:
 Given there are 12 cucumbers
 # <eat> replaced with 5:
 When I eat 5 cucumbers
 # <left> replaced with 7:
 Then I should have 7 cucumbers

Tables

Tables as arguments to steps are handy for specifying a larger data set -
usually as input to a Given or as expected output from a Then:

Scenario:
 Given the following people exist:
 | name | email | phone |
 | Aslak | aslak@email.com | 123 |
 | Joe | joe@email.com | 234 |
 | Bryan | bryan@email.org | 456 |

Attention

Don’t confuse tables with scenario outlines - syntactically
they are identical, but they have a different purpose. Outlines declare
multiple different values for the same scenario, while tables are used to
expect a set of data.

Matching Tables in your Step Definition

A matching definition for this step looks like this:

use Behat\Gherkin\Node\TableNode;

// ...

/**
 * @Given the following people exist:
 */
public function thePeopleExist(TableNode $table)
{
 foreach ($table as $row) {
 // $row['name'], $row['email'], $row['phone']
 }
}

A table is injected into a definition as a TableNode object, from
which you can get hash by columns (TableNode::getHash() method) or by
rows (TableNode::getRowsHash()).

Multiline Arguments

The one line steps let Behat extract small strings from your steps
and receive them in your step definitions. However, there are times when you
want to pass a richer data structure from a step to a step definition.

This is what multiline step arguments are designed for. They are written on
lines immediately following a step and are passed to the step definition
method as the last argument.

Multiline step arguments come in two flavours: tables or pystrings.

Pystrings

Multiline Strings (also known as PyStrings) are useful for specifying a
larger piece of text. The text should be offset by delimiters consisting of
three double-quote marks ("""), placed on their own line:

Scenario:
 Given a blog post named "Random" with:
 """
 Some Title, Eh?
 ===============
 Here is the first paragraph of my blog post.
 Lorem ipsum dolor sit amet, consectetur adipiscing
 elit.
 """

Note

The inspiration for PyString comes from Python where """ is used to
delineate docstrings, much in the way /** ... */ is used for multiline
docblocks in PHP.

Matching PyStrings in your Step Definition

In your step definition, there’s no need to find this text and match it in
your pattern. The text will automatically be passed as the last
argument into the step definition method. For example:

use Behat\Gherkin\Node\PyStringNode;

// ...

/**
 * @Given a blog post named :title with:
 */
public function blogPost($title, PyStringNode $markdown)
{
 $this->createPost($title, $markdown->getRaw());
}

PyStrings are stored in a PyStringNode instance, which you can simply
convert to a string with (string) $pystring or $pystring->getRaw()
as in the example above.

Note

Indentation of the opening """ is not important, although common practice
is two spaces in from the enclosing step. The indentation inside the triple
quotes, however, is significant. Each line of the string passed to the step
definition’s callback will be de-indented according to the opening """.
Indentation beyond the column of the opening """ will therefore be
preserved.

 Copyright 2016, Konstantin Kudryashov (@everzet).
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Behat documentation

 	User Guide

Organizing Features and Scenarios

Tags

Tags are a great way to organize your features and scenarios. Consider this
example:

@billing
Feature: Verify billing

 @important
 Scenario: Missing product description

 Scenario: Several products

A Scenario or Feature can have as many tags as you like, just separate them
with spaces:

@billing @bicker @annoy
Feature: Verify billing

Note

If a tag exists on a Feature, Behat will assign that tag to all
child Scenarios and Scenario Outlines too.

 Copyright 2016, Konstantin Kudryashov (@everzet).
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Behat documentation

 	User Guide

Testing Features

We’ve already used this strange FeatureContext class as a home for our
step definitions
and Hooks,
but we haven’t done much to explain what it actually is.

Context classes are a keystone of testing environment in Behat. The context
class is a simple POPO (Plain Old PHP Object) that tells Behat how to test
your features. If *.feature files are all about describing how your
application behaves, then the context class is all about how to test it.

// features/bootstrap/FeatureContext.php

use Behat\Behat\Context\Context;

class FeatureContext implements Context
{
 public function __construct($parameter)
 {
 // instantiate context
 }

 /** @BeforeFeature */
 public static function prepareForTheFeature()
 {
 // clean database or do other preparation stuff
 }

 /** @Given we have some context */
 public function prepareContext()
 {
 // do something
 }

 /** @When event occurs */
 public function doSomeAction()
 {
 // do something
 }

 /** @Then something should be done */
 public function checkOutcomes()
 {
 // do something
 }
}

A simple mnemonic for context classes is: “testing features in a context”.
Feature descriptions tend to be very high level. It means there’s not much
technical detail exposed in them, so the way you will test those
features pretty much depends on the context you test them in. That’s what
context classes are.

Tip

Behat can automatically generate this class by using the
Behat command line tool with the
--init option from your project’s directory. Behat has several built-in
tools that can help you when creating a new project. Learn more about
“Initialize a New Behat Project”.

	Hooking into the Test Process
	Behat Hook System

	Hooks

	Suite Hooks

	Feature Hooks

	Scenario Hooks

	Step Hooks

	Tagged Hooks

	Defining Reusable Actions
	Creating Your First Step Definition

	Definition Snippets

	Step Execution Result Types

	Step Argument Transformations

Context Class Requirements

In order to be used by Behat, your context class should follow these rules:

	The context class should implement the Behat\Behat\Context\Context interface.

	The context class should be called FeatureContext. It’s a simple convention
inside the Behat infrastructure. FeatureContext is the name of the
context class for the default suite. This can easily be changed through
suite configuration inside behat.yml.

	The context class should be discoverable and loadable by Behat. That means you
should somehow tell Behat about your class file. Behat comes with a PSR-0
autoloader out of the box and the default autoloading directory is
features/bootstrap. That’s why the default FeatureContext is loaded so
easily by Behat. You can place your own classes under features/bootstrap
by following the PSR-0 convention or you can even define your own custom
autoloading folder via behat.yml.

Note

Behat\Behat\Context\SnippetAcceptingContext and
Behat\Behat\Context\CustomSnippetAcceptingContext are special
versions of the Behat\Behat\Context\Context interface that tell
Behat this context expects snippets to be generated for it.

Tip

The Behat command line tool
has an --init option that will initialize a new Behat project in your
directory. Learn more about
Initialize a New Behat Project.

Contexts Lifetime

Your context class is initialized before each scenario is run, and every scenario
has its very own context instance. This means 2 things:

	Every scenario is isolated from each other scenario’s context. You can do
almost anything inside your scenario context instance without the fear of
affecting other scenarios - every scenario gets its own context instance.

	Every step in a single scenario is executed inside a common context
instance. This means you can set private instance variables inside
your @Given steps and you’ll be able to read their new values inside
your @When and @Then steps.

Multiple Contexts

At some point, it could become very hard to maintain all your
step definitions
and Hooks
inside a single class. You could use class inheritance and split definitions
into multiple classes, but doing so could cause your code to become more
difficult to follow and use.

In light of these issues, Behat provides a more flexible way of helping make
your code more structured by allowing you to use multiple contexts in a single test
suite.

In order to customise the list of contexts your test suite requires, you need
to fine-tune the suite configuration inside behat.yml:

behat.yml

default:
 suites:
 default:
 contexts:
 - FeatureContext
 - SecondContext
 - ThirdContext

The first default in this configuration is a name of the profile. We
will discuss profiles a little bit later. Under
the specific profile, we have a special suites section, which
configures suites inside this profile. We will talk about test suites in more
detail in the next chapter, for now just keep in mind
that a suite is a way to tell Behat where to find your features and
how to test them. The interesting part for us now is the contexts
section - this is an array of context class names. Behat will use the classes
specified there as your feature contexts. This means that every time
Behat sees a scenario in your test suite, it will:

	Get list of all context classes from this contexts option.

	Will try to initialize all these context classes into objects.

	Will search for step definitions and
Hooks in all of them.

Note

Do not forget that each of these context classes should follow all
context class requirements. Specifically - they all should implement
Behat\Behat\Context\Context interface and be autoloadable by
Behat.

Basically, all contexts under the contexts section of your behat.yml
are the same for Behat. It will find and use the methods in them the same way
it does in the default FeatureContext. And if you’re happy with a single
context class, but you don’t like the name FeatureContext, here’s
how you change it:

behat.yml

default:
 suites:
 default:
 contexts:
 - MyAwesomeContext

This configuration will tell Behat to look for MyAwesomeContext
instead of the default FeatureContext.

Note

Unlike profiles, Behat will not inherit any configuration of your
default suite. The name default is only used for demonstration
purpose in this guide. If you have multiple suites that all should use the
same context, you will have to define that specific context for every
specific suite:

behat.yml

default:
 suites:
 default:
 contexts:
 - MyAwesomeContext
 - MyWickedContext
 suite_a:
 contexts:
 - MyAwesomeContext
 - MyWickedContext
 suite_b:
 contexts:
 - MyAwesomeContext

This configuration will tell Behat to look for MyAwesomeContext and
MyWickedContext when testing suite_a and MyAwesomeContext when
testing suite_b. In this example, suite_b will not be able to call
steps that are defined in the MyWickedContext. As you can see, even if
you are using the name default as the name of the suite, Behat will not
inherit any configuration from this suite.

Context Parameters

Context classes can be very flexible depending on how far you want
to go in making them dynamic. Most of us will want to make our contexts
environment-independent; where should we put temporary files, which URLs
will be used to access the application? These are
context configuration options highly dependent on the environment you
will test your features in.

We already said that context classes are just plain old PHP classes.
How would you incorporate environment-dependent parameters into your
PHP classes? Use constructor arguments:

// features/bootstrap/MyAwesomeContext.php

use Behat\Behat\Context\Context;

class MyAwesomeContext implements Context
{
 public function __construct($baseUrl, $tempPath)
 {
 $this->baseUrl = $baseUrl;
 $this->tempPath = $tempPath;
 }
}

As a matter of fact, Behat gives you ability to do just that. You can
specify arguments required to instantiate your context classes through
same contexts setting inside your behat.yml:

behat.yml

default:
 suites:
 default:
 contexts:
 - MyAwesomeContext:
 - http://localhost:8080
 - /var/tmp

Note

Note an indentation for parameters. It is significant:

contexts:
 - MyAwesomeContext:
 - http://localhost:8080
 - /var/tmp

Aligned four spaces from the context class itself.

Arguments would be passed to the MyAwesomeContext constructor in
the order they were specified here. If you are not happy with the idea
of keeping an order of arguments in your head, you can use argument
names instead:

behat.yml

default:
 suites:
 default:
 contexts:
 - MyAwesomeContext:
 baseUrl: http://localhost:8080
 tempPath: /var/tmp

As a matter of fact, if you do, the order in which you specify these
arguments becomes irrelevant:

behat.yml

default:
 suites:
 default:
 contexts:
 - MyAwesomeContext:
 tempPath: /var/tmp
 baseUrl: http://localhost:8080

Taking this a step further, if your context constructor arguments are
optional:

public function __construct($baseUrl = 'http://localhost', $tempPath = '/var/tmp')
{
 $this->baseUrl = $baseUrl;
 $this->tempPath = $tempPath;
}

You then can specify only the parameter that you actually need to change:

behat.yml

default:
 suites:
 default:
 contexts:
 - MyAwesomeContext:
 tempPath: /var/tmp

In this case, the default values would be used for other parameters.

Context Traits

PHP 5.4 have brought an interesting feature to the language - traits.
Traits are a mechanism for code reuse in single inheritance languages
like PHP. Traits are implemented as a compile-time copy-paste in PHP.
That means if you put some step definitions or hooks inside a trait:

// features/bootstrap/ProductsDictionary.php

trait ProductsDictionary
{
 /**
 * @Given there is a(n) :product, which costs £:price
 */
 public function thereIsAWhichCostsPs($product, $price)
 {
 throw new PendingException();
 }
}

And then use it in your context:

// features/bootstrap/MyAwesomeContext.php

use Behat\Behat\Context\Context;

class MyAwesomeContext implements Context
{
 use ProductsDictionary;
}

It will just work as you expect it to.

Context traits come in handy if you’d like to have separate contexts,
but still need to use the very same step definition in both of them. Instead of
having the same code in both context classes – and having to maintain it
in both – you should create a single Trait that you would then use in
both context classes.

Note

Given that step definitions cannot be duplicated within a Suite, this will only work
for contexts used in separate suites.

In other words, if your Suite uses at least two different Contexts, and
those context classes use the same Trait, this will result in a duplicate
step definition and Behat will complain by throwing a Redundant exception.

 Copyright 2016, Konstantin Kudryashov (@everzet).
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Behat documentation

 	User Guide

 	Testing Features

Hooking into the Test Process

You’ve learned how to write step definitions and
that with Gherkin you can move common steps into a
background block, making your features DRY. But what if that’s not enough? What
if you want to execute some code before the whole test suite or after a
specific scenario? Hooks to the rescue:

// features/bootstrap/FeatureContext.php

use Behat\Behat\Context\Context;
use Behat\Testwork\Hook\Scope\BeforeSuiteScope;
use Behat\Behat\Hook\Scope\AfterScenarioScope;

class FeatureContext implements Context
{
 /**
 * @BeforeSuite
 */
 public static function prepare(BeforeSuiteScope $scope)
 {
 // prepare system for test suite
 // before it runs
 }

 /**
 * @AfterScenario @database
 */
 public function cleanDB(AfterScenarioScope $scope)
 {
 // clean database after scenarios,
 // tagged with @database
 }
}

Behat Hook System

Behat provides a number of hook points which allow us to run arbitrary
logic at various points in the Behat test cycle. Hooks are a lot like
step definitions or transformations - they are just simple methods
with special annotations inside your context classes. There is no
association between where the hook is defined and which node it is run
for, but you can use tagged or named hooks if you want more fine grained
control.

All defined hooks are run whenever the relevant action occurs. The action
tree looks something like this:

├── Suite #1
│ ├── Feature #1
│ │ ├── Scenario #1
│ │ │ ├── Step #1
│ │ │ └── Step #2
│ │ └── Scenario #2
│ │ ├── Step #1
│ │ └── Step #2
│ └── Feature #2
│ └── Scenario #1
│ └── Step #1
└── Suite #2
 └── Feature #1
 └── Scenario #1
 └── Step #1

This is a basic test cycle in Behat. There are many test suites, each of
which has many features, which themselves have many scenarios with many
steps. Note that when Behat actually runs, scenario outline examples are
interpreted as scenarios - meaning each outline example becomes an actual
scenario in this action tree.

Hooks

Hooks allow you to execute your custom code just before or just after each
of these actions. Behat allows you to use the following hooks:

	The BeforeSuite hook is run before any feature in the suite runs. For
example, you could use this to set up the project you are testing. This
hook receives an optional argument with an instance of the
Behat\Testwork\Hook\Scope\BeforeSuiteScope class.

	The AfterSuite hook is run after all features in the suite have run.
This hooks is useful to dump or print some kind of statistics or tear
down your application after testing. This hook receives an optional
argument with an instance of the
Behat\Testwork\Hook\Scope\AfterSuiteScope class.

	The BeforeFeature hook is run before a feature runs. This hook receives
an optional argument with an instance of the
Behat\Behat\Hook\Scope\BeforeFeatureScope class.

	The AfterFeature hook is run after Behat finishes executing a feature.
This hook receives an optional argument with an instance of the
Behat\Behat\Hook\Scope\AfterFeatureScope class.

	The BeforeScenario hook is run before a specific scenario will run. This
hook receives an optional argument with an instance of the
Behat\Behat\Hook\Scope\BeforeScenarioScope class.

	The AfterScenario hook is run after Behat finishes executing a scenario.
This hook receives an optional argument with an instance of the
Behat\Behat\Hook\Scope\AfterScenarioScope class.

	The BeforeStep hook is run before a step runs. This hook receives an
optional argument with an instance of the
Behat\Behat\Hook\Scope\BeforeStepScope class.

	The AfterStep hook is run after Behat finishes executing a step. This
hook receives an optional argument with an instance of the
Behat\Behat\Hook\Scope\AfterStepScope class.

You can use any of these hooks by annotating any of your methods in your context
class:

/**
 * @BeforeSuite
 */
public static function prepare($scope)
{
 // prepare system for test suite
 // before it runs
}

We use annotations as we did before with definitions.
Simply use the annotation of the name of the hook you want to use (e.g.
@BeforeSuite).

Suite Hooks

Suite hooks are run outside of the scenario context. It means that your context
class (e.g. FeatureContext) is not instantiated yet and the only way Behat
can execute code in it is through the static calls. That is why suite hooks must
be defined as static methods in the context class:

use Behat\Testwork\Hook\Scope\BeforeSuiteScope;
use Behat\Testwork\Hook\Scope\AfterSuiteScope;

/** @BeforeSuite */
public static function setup(BeforeSuiteScope $scope)
{
}

/** @AfterSuite */
public static function teardown(AfterSuiteScope $scope)
{
}

There are two suite hook types available:

	@BeforeSuite - executed before any feature runs.

	@AfterSuite - executed after all features have run.

Feature Hooks

Same as suite hooks, feature hooks are ran outside of the scenario context.
So same as suite hooks, your feature hooks must be defined as static methods
inside your context:

use Behat\Behat\Hook\Scope\BeforeFeatureScope;
use Behat\Behat\Hook\Scope\AfterFeatureScope;

/** @BeforeFeature */
public static function setupFeature(BeforeFeatureScope $scope)
{
}

/** @AfterFeature */
public static function teardownFeature(AfterFeatureScope $scope)
{
}

There are two feature hook types available:

	@BeforeFeature - gets executed before every feature in suite.

	@AfterFeature - gets executed after every feature in suite.

Scenario Hooks

Scenario hooks are triggered before or after each scenario runs. These
hooks are executed inside an initialized context instance, so not only could they
be simple context instance methods, they will also have access to
any object properties you set during your scenario:

use Behat\Behat\Hook\Scope\BeforeScenarioScope;
use Behat\Behat\Hook\Scope\AfterScenarioScope;

/** @BeforeScenario */
public function before(BeforeScenarioScope $scope)
{
}

/** @AfterScenario */
public function after(AfterScenarioScope $scope)
{
}

There are two scenario hook types available:

	@BeforeScenario - executed before every scenario in each feature.

	@AfterScenario - executed after every scenario in each feature.

Now, the interesting part:

The @BeforeScenario hook executes not only
before each scenario in each feature, but before each example row in
the scenario outline. Yes, each scenario outline example row works almost the
same as a usual scenario.

@AfterScenario functions exactly the same way, being executed both after
usual scenarios and outline examples.

Step Hooks

Step hooks are triggered before or after each step runs. These hooks are
run inside an initialized context instance, so they are just plain context
instance methods in the same way as scenario hooks are:

use Behat\Behat\Hook\Scope\BeforeStepScope;
use Behat\Behat\Hook\Scope\AfterStepScope;

/** @BeforeStep */
public function beforeStep(BeforeStepScope $scope)
{
}

/** @AfterStep */
public function afterStep(AfterStepScope $scope)
{
}

There are two step hook types available:

	@BeforeStep - executed before every step in each scenario.

	@AfterStep - executed after every step in each scenario.

Tagged Hooks

Sometimes you may want a certain hook to run only for certain scenarios,
features or steps. This can be achieved by associating a @BeforeFeature,
@AfterFeature, @BeforeScenario or @AfterScenario hook with one
or more tags. You can also use OR (||) and AND (&&) tags:

/**
 * @BeforeScenario @database,@orm
 */
public function cleanDatabase()
{
 // clean database before
 // @database OR @orm scenarios
}

Use the && tag to execute a hook only when it has all provided tags:

/**
 * @BeforeScenario @database&&@fixtures
 */
public function cleanDatabaseFixtures()
{
 // clean database fixtures
 // before @database @fixtures
 // scenarios
}

 Copyright 2016, Konstantin Kudryashov (@everzet).
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Behat documentation

 	User Guide

 	Testing Features

Defining Reusable Actions

Gherkin language provides a way to describe your
application behavior in business understandable language. But how do you test
that the described behavior is actually implemented? Or that the application
satisfies your business expectations as described in the feature scenarios?
Behat provides a way to map your scenario steps (actions) 1-to-1 with actual
PHP code called step definitions:

/**
 * @When I do something with :argument
 */
public function iDoSomethingWith($argument)
{
 // do something with $argument
}

Note

Step definitions are just normal PHP methods. They are instance methods in
a special class called FeatureContext.

Creating Your First Step Definition

The main goal for a step definition is to be executed when Behat sees its matching
step in executed scenario. However, just because a method exists within FeatureContext
doesn’t mean Behat can find it. Behat needs a way to check that a concrete class
method is suitable for a concrete step in a scenario. Behat matches
FeatureContext methods to step definitions using pattern matching.

When Behat runs, it compares lines of Gherkin steps from each scenario to the
patterns bound to each method in your FeatureContext. If the line of Gherkin
satisfies a bound pattern, its corresponding step definition is executed. It’s
that simple!

Behat uses php-doc annotations to bind patterns to FeatureContext methods:

/**
 * @When I do something with :methodArgument
 */
public function someMethod($methodArgument) {}

Let’s take a closer look at this code:

	@When is a definition keyword. There are 3 supported keywords in
annotations: @Given/@When/@Then. These three definition keywords
are actually equivalent, but all three are available so that your step
definition remains readable.

	The text after the keyword is the step text pattern (e.g.
I do something with :methodArgument).

	All token values of the pattern (e.g. :methodArgument) will be captured
and passed to the method argument with the same name ($methodArgument).

Note

Notice the comment block starts with /**, and not the usual /*.
This is important for Behat to be able to parse such comments as annotations!

As you have probably noticed, this pattern is quite general and its corresponding
method will be called for steps that contain ... I do something with ...,
including:

Given I do something with "string1"
When I do something with 'some other string'
Then I do something with 25

The only real difference between those steps in the eyes of Behat is the
captured token text. This text will be passed to the step’s corresponding
method as an argument value. In the example above,
FeatureContext::someMethod() will be called three times, each time with
a different argument:

	$context->someMethod($methodArgument = 'string1');.

	$context->someMethod($methodArgument = 'some other string');.

	$context->someMethod($methodArgument = '25');.

Note

A pattern can’t automatically determine the datatype of its matches, so
all method arguments coming from step definitions are passed as strings.
Even if your pattern matches “500”, which could be considered an integer,
‘500’ will be passed as a string argument to the step definition’s method.

This is not a feature or limitation of Behat, but rather the inherent way
string matching works. It is your responsibility to cast string arguments
to integers, floats or booleans where applicable given the code you are
testing.

Casting arguments to specific types can be accomplished using
step argument transformations.

Note

Behat does not differentiate between step keywords when matching patterns
to methods. So a step defined with @When could also be matched to
@Given ..., @Then ..., @And ..., @But ..., etc.

Your step definitions can also define multiple arguments to pass to its matching
FeatureContext method:

/**
 * @When I do something with :stringArgument and with :numberArgument
 */
public function someMethod($stringArgument, $numberArgument) {}

You can also specify alternative words and optional parts of words, like this:

/**
 * @When there is/are :count monster(s)
 */
public function thereAreMonsters($count) {}

If you need to come up with a much more complicated matching algorithm, you can
always use good old regular expressions:

/**
 * @When /^there (?:is|are) (\d+) monsters?$/i
 */
public function thereAreMonsters($count) {}

Definition Snippets

You now know how to write step definitions by hand, but writing all these
method stubs, annotations and patterns by hand is tedious. Behat makes
this routine task much easier and fun by generating definition snippets for
you! Let’s pretend that you have this feature:

Feature:
 Scenario:
 Given some step with "string" argument
 And number step with 23

If your context class implements Behat\Behat\Context\SnippetAcceptingContext
interface and you test a feature with missing steps in Behat:

$ vendor/bin/behat features/example.feature

Behat will provide auto-generated snippets for your context class.

It not only generates the proper definition annotation type (@Given), but
also a proper pattern with tokens capturing (:arg1, :arg2), method
name (someStepWithArgument(), numberStepWith()) and arguments (
$arg1, $arg2), all based just on the text of the step. Isn’t that cool?

The only thing left for you to do is to copy these method snippets into your
FeatureContext class and provide a useful body for them. Or even better,
run behat with --append-snippets option:

$ vendor/bin/behat features/example.feature --dry-run --append-snippets

--append-snippets tells Behat to automatically add snippets inside your
context class.

Note

Implementing the SnippetAcceptingContext interface tells Behat that
your context is expecting snippets to be generated inside it. Behat will
generate simple pattern snippets for you, but if regular expressions
are your thing, Behat can generate them instead if you implement
Behat\Behat\Context\CustomSnippetAcceptingContext interface instead
and add getAcceptedSnippetType() method returning string "regex":

public static function getAcceptedSnippetType()
{
 return 'regex';
}

Step Execution Result Types

Now you know how to map actual code to PHP code that will be executed. But
how can you tell what exactly “failed” or “passed” when executing a step?
And how does Behat actually check that a step executed properly?

For that, we have step execution types. Behat differentiates between seven
types of step execution results: “Successful Steps”, “Undefined Steps”,
“Pending Steps”, “Failed Steps”, “Skipped Steps”, “Ambiguous Steps”
and “Redundant Step Definitions”.

Let’s use our previously introduced feature for all the following examples:

features/example.feature
Feature:
 Scenario:
 Given some step with "string" argument
 And number step with 23

Successful Steps

When Behat finds a matching step definition it will execute it. If the
definition method does not throw any Exception, the step is marked
as successful (green). What you return from a definition method has no
effect on the passing or failing status of the definition itself.

Let’s pretend our context class contains the code below:

// features/bootstrap/FeatureContext.php

use Behat\Behat\Context\Context;

class FeatureContext implements Context
{
 /** @Given some step with :argument1 argument */
 public function someStepWithArgument($argument1)
 {
 }

 /** @Given number step with :argument1 */
 public function numberStepWith($argument1)
 {
 }
}

When you run your feature, you’ll see all steps passed and are marked as
green. That’s simply because no exceptions were thrown during their
execution.

Note

Passed steps are always marked as green if colors are supported by
your console.

Tip

Enable the “posix” PHP extension in order to see colorful Behat output.
Depending on your Linux, Mac OS or other Unix system it might be part
of the default PHP installation or a separate php5-posix package.

Undefined Steps

When Behat cannot find a matching definition, the step is marked as
undefined, and all subsequent steps in the scenarios are skipped.

Let’s pretend we have an empty context class:

// features/bootstrap/FeatureContext.php

use Behat\Behat\Context\Context;

class FeatureContext implements Context
{
}

When you run your feature, you’ll get 2 undefined steps that are marked
yellow.

Note

Undefined steps are always marked as yellow if colors are supported by
your console.

Note

All steps following an undefined step are not executed, as the
behavior following it is unpredictable. These steps are marked as
skipped (cyan).

Tip

If you use the --strict option with Behat, undefined steps will cause
Behat to exit with 1 code.

Pending Steps

When a definition method throws a
Behat\Behat\Tester\Exception\PendingException exception, the step is
marked as pending, reminding you that you have work to do.

Let’s pretend your FeatureContext looks like this:

// features/bootstrap/FeatureContext.php

use Behat\Behat\Context\Context;
use Behat\Behat\Tester\Exception\PendingException;

class FeatureContext implements Context
{
 /** @Given some step with :argument1 argument */
 public function someStepWithArgument($argument1)
 {
 throw new PendingException('Do some string work');
 }

 /** @Given number step with :argument1 */
 public function numberStepWith($argument1)
 {
 throw new PendingException('Do some number work');
 }
}

When you run your feature, you’ll get 1 pending step that is marked yellow and
one step following it that is marked cyan.

Note

Pending steps are always marked as yellow if colors are supported by
your console, because they are logically similar to undefined steps.

Note

All steps following a pending step are not executed, as the
behavior following it is unpredictable. These steps are marked as
skipped.

Tip

If you use --strict option with Behat, pending steps will cause Behat
to exit with 1 code.

Failed Steps

When a definition method throws any Exception (except PendingException)
during execution, the step is marked as failed. Again, what you return from a
definition does not affect the passing or failing of the step. Returning null
or false will not cause a step to fail.

Let’s pretend, that your FeatureContext has following code:

// features/bootstrap/FeatureContext.php

use Behat\Behat\Context\Context;

class FeatureContext implements Context
{
 /** @Given some step with :argument1 argument */
 public function someStepWithArgument($argument1)
 {
 throw new Exception('some exception');
 }

 /** @Given number step with :argument1 */
 public function numberStepWith($argument1)
 {
 }
}

When you run your feature, you’ll get 1 failing step that is marked red and
it will be followed by 1 skipped step that is marked cyan.

Note

Failed steps are always marked as red if colors are supported by
your console.

Note

All steps within a scenario following a failed step are not executed, as the
behavior following it is unpredictable. These steps are marked as
skipped.

Tip

If Behat finds a failed step during suite execution, it will exit with
1 code.

Tip

Behat doesn’t come with its own assertion tool, but you can use any proper assertion
tool out there. Proper assertion tool is a library, which assertions throw
exceptions on fail. For example, if you’re familiar with PHPUnit, you can use
its assertions in Behat by installing it via composer:

$ php composer.phar require --dev phpunit/phpunit

and then by simply using assertions in your steps:

PHPUnit_Framework_Assert::assertCount(intval($count), $this->basket);

Tip

You can get exception stack trace with -vv option provided to Behat:

$ vendor/bin/behat features/example.feature -vv

Skipped Steps

Steps that follow undefined, pending or failed steps are never
executed, even if there is a matching definition. These steps are marked
skipped:

Note

Skipped steps are always marked as cyan if colors are supported by
your console.

Ambiguous Steps

When Behat finds two or more definitions that match a single step, this step is
marked as ambiguous.

Consider your FeatureContext has following code:

// features/bootstrap/FeatureContext.php

use Behat\Behat\Context\Context;

class FeatureContext implements Context
{
 /** @Given /^.* step with .*$/ */
 public function someStepWithArgument()
 {
 }

 /** @Given /^number step with (\d+)$/ */
 public function numberStepWith($argument1)
 {
 }
}

Executing Behat with this feature context will result in a Ambiguous
exception being thrown.

Behat will not make a decision about which definition to execute. That’s your
job! But as you can see, Behat will provide useful information to help you
eliminate such problems.

Redundant Step Definitions

Behat will not let you define a step expression’s corresponding pattern more
than once. For example, look at the two @Given patterns defined in this
feature context:

// features/bootstrap/FeatureContext.php

use Behat\Behat\Context\Context;

class FeatureContext implements Context
{
 /** @Given /^number step with (\d+)$/ */
 public function workWithNumber($number1)
 {
 }

 /** @Given /^number step with (\d+)$/ */
 public function workDifferentlyWithNumber($number1)
 {
 }
}

Executing Behat with this feature context will result in a Redundant
exception being thrown.

Step Argument Transformations

Step argument transformations allow you to abstract common operations performed
on step definition arguments into reusable methods. In addition, these methods
can be used to transform a normal string argument that was going to be used
as an argument to a step definition method, into a more specific data type
or an object.

Each transformation method must return a new value. This value then replaces
the original string value that was going to be used as an argument to a step
definition method.

Transformation methods are defined using the same annotation style as step
definition methods, but instead use the @Transform keyword, followed by
a matching pattern.

As a basic example, you can automatically cast all numeric arguments to
integers with the following context class code:

// features/bootstrap/FeatureContext.php

use Behat\Behat\Context\Context;

class FeatureContext implements Context
{
 /**
 * @Transform /^(\d+)$/
 */
 public function castStringToNumber($string)
 {
 return intval($string);
 }

 /**
 * @Then a user :name, should have :count followers
 */
 public function assertUserHasFollowers($name, $count)
 {
 if ('integer' !== gettype($count)) {
 throw new Exception('Integer expected');
 }
 }
}

Note

In the same way as with step definitions, you can use both simple patterns and
regular expressions.

Let’s go a step further and create a transformation method that takes an
incoming string argument and returns a specific object. In the following
example, our transformation method will be passed a username, and the method
will create and return a new User object:

// features/bootstrap/FeatureContext.php

use Behat\Behat\Context\Context;

class FeatureContext implements Context
{
 /**
 * @Transform :user
 */
 public function castUsernameToUser($user)
 {
 return new User($user);
 }

 /**
 * @Then a :user, should have :count followers
 */
 public function assertUserHasFollowers(User $user, $count)
 {
 if ('integer' !== gettype($count)) {
 throw new Exception('Integer expected');
 }
 }
}

Table Transformation

Let’s pretend we have written the following feature:

features/table.feature
Feature: Users

 Scenario: Creating Users
 Given the following users:
 | name | followers |
 | everzet | 147 |
 | avalanche123 | 142 |
 | kriswallsmith | 274 |
 | fabpot | 962 |

And our FeatureContext class looks like this:

// features/bootstrap/FeatureContext.php

use Behat\Behat\Context\Context;
use Behat\Gherkin\Node\TableNode;

class FeatureContext implements Context
{
 /**
 * @Given the following users:
 */
 public function pushUsers(TableNode $usersTable)
 {
 $users = array();
 foreach ($usersTable as $userHash) {
 $user = new User();
 $user->setUsername($userHash['name']);
 $user->setFollowersCount($userHash['followers']);
 $users[] = $user;
 }

 // do something with $users
 }
}

A table like this may be needed in a step testing the creation of the
User objects themselves, and later used again to validate other parts of
our codebase that depend on multiple User objects that already exist.
In both cases, our transformation method can take our table of usernames and
follower counts and build dummy User objects. By using a transformation
method we have eliminated the need to duplicate the code that creates our
User objects, and can instead rely on the transformation method each time
this functionality is needed.

Transformations can also be used with tables. A table transformation is matched
via a comma-delimited list of the column headers prefixed with table::

// features/bootstrap/FeatureContext.php

use Behat\Behat\Context\Context;
use Behat\Gherkin\Node\TableNode;

class FeatureContext implements Context
{
 /**
 * @Transform table:name,followers
 */
 public function castUsersTable(TableNode $usersTable)
 {
 $users = array();
 foreach ($usersTable->getHash() as $userHash) {
 $user = new User();
 $user->setUsername($userHash['name']);
 $user->setFollowersCount($userHash['followers']);
 $users[] = $user;
 }

 return $users;
 }

 /**
 * @Given the following users:
 */
 public function pushUsers(array $users)
 {
 // do something with $users
 }

 /**
 * @Then I expect the following users:
 */
 public function assertUsers(array $users)
 {
 // do something with $users
 }
}

Note

Transformations are powerful and it is important to take care how you
implement them. A mistake can often introduce strange and unexpected
behavior. Also, they are inherently hard to debug because of their
highly dynamic nature.

Tip

Behat provides a command line
option
that allows you to easily browse definitions in order to reuse them or adapt
them.

 Copyright 2016, Konstantin Kudryashov (@everzet).
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Behat documentation

 	User Guide

Command Line Tool

	Identifying Tests
	By Suite

	Format Options

	Informative Output
	Print Definitions

 Copyright 2016, Konstantin Kudryashov (@everzet).
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Behat documentation

 	User Guide

 	Command Line Tool

Identifying Tests

By Suite

By default, when you run Behat it will execute all registered suites
one-by-one. If you want to run a single suite instead, use the --suite
option:

$ vendor/bin/behat --suite=web_features

 Copyright 2016, Konstantin Kudryashov (@everzet).
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Behat documentation

 	User Guide

 	Command Line Tool

Format Options

Behat supports different ways of printing output information. Output printers
in behat are called formats or formatters. You can tell behat to
run with a specific formatter by providing the --format option:

$ behat --format progress

Note

The default formatter is pretty.

behat supports 2 formatters out of the box:

	pretty - prints the feature as is:

[image: ../../_images/formatter-pretty.png]

	progress - prints one character per step:

[image: ../../_images/formatter-progress.png]

If you don’t want to print output to the console, you can tell behat
to print output to a file instead of STDOUT with the --out option:

$ behat --format pretty --out report.txt

Note

Some formatters, like junit, always require the --out option to be
specified. The junit formatter generates *.xml files for every
suite, so it needs a destination directory to put these XML files into.

Also, you can specify multiple formats to be used by Behat using multiple –format options:

$ behat --format pretty --format progress

In this case, default output will be used as output for both formatters. But if you want
them to use different ones - specify them with --out:

$ behat -f pretty -o ~/pretty.out -f progress -o std -f junit -o xml

In this case, output of pretty formatter will be written to ~/pretty.out file, output of junit
formatter will be written to xml folder and progress formatter will just print to console.

Behat tries hard to identify if your terminal supports colors or not, but
sometimes it still fails. In such cases, you can force behat to
use colors (or not) with the options --colors or --no-colors,
respectively:

$ behat --no-colors

 Copyright 2016, Konstantin Kudryashov (@everzet).
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Behat documentation

 	User Guide

 	Command Line Tool

Informative Output

Print Definitions

As your set of features will grow, there’s a good chance that the amount of
different steps that you’ll have at your disposal to describe new scenarios will also grow.

Behat provides a command line option --definitions or simply -d to easily browse definitions
in order to reuse them or adapt them (introducing new placeholders for example).

For example, when using the Mink context provided by the Mink extension, you’ll have access to its
step dictionary by running:

$ behat -di
web_features | Given /^(?:|I)am on (?:|the)homepage$/
 | Opens homepage.
 | at `Behat\MinkExtension\Context\MinkContext::iAmOnHomepage()`

web_features | When /^(?:|I)go to (?:|the)homepage$/
 | Opens homepage.
 | at `Behat\MinkExtension\Context\MinkContext::iAmOnHomepage()`

web_features | Given /^(?:|I)am on "(?P<page>[^"]+)"$/
 | Opens specified page.
 | at `Behat\MinkExtension\Context\MinkContext::visit()`

...

or, for a shorter output:

$ behat -dl
web_features | Given /^(?:|I)am on (?:|the)homepage$/
web_features | When /^(?:|I)go to (?:|the)homepage$/
web_features | Given /^(?:|I)am on "(?P<page>[^"]+)"$/
web_features | When /^(?:|I)go to "(?P<page>[^"]+)"$/
web_features | When /^(?:|I)reload the page$/
web_features | When /^(?:|I)move backward one page$/
web_features | When /^(?:|I)move forward one page$/
...

You can also search for a specific pattern by running:

$ behat --definitions="field" (or simply behat -dfield)
web_features | When /^(?:|I)fill in "(?P<field>(?:[^"]|\\")*)" with "(?P<value>(?:[^"]|\\")*)"$/
 | Fills in form field with specified id|name|label|value.
 | at `Behat\MinkExtension\Context\MinkContext::fillField()`

web_features | When /^(?:|I)fill in "(?P<field>(?:[^"]|\\")*)" with:$/
 | Fills in form field with specified id|name|label|value.
 | at `Behat\MinkExtension\Context\MinkContext::fillField()`

#...

That’s it, you can now search and browse your whole step dictionary.

 Copyright 2016, Konstantin Kudryashov (@everzet).
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Behat documentation

 	User Guide

Configuration

Behat has a very powerful configuration system based on YAML configuration files and
profiles.

	Configuring Test Suites
	Suite Paths

	Suite Filters

	Suite Contexts

behat.yml

All configuration happens inside a single configuration file in the YAML
format. Behat tries to load behat.yml or config/behat.yml by default,
or you can tell Behat where your config file is with the --config option:

$ behat --config custom-config.yml

All configuration parameters in that file are defined under a profile name root
(default: for example). A profile is just a custom name you can use to
quickly switch testing configuration by using the --profile option when
executing your feature suite.

The default profile is always default. All other profiles inherit
parameters from the default profile. If you only need one profile, define
all of your parameters under the default: root:

behat.yml
default:
 #...

Overriding default params

Each profile is an extension of the default profile. This means you can
define a new profile that overrides configuration parameters defined in the
default profile.

Let’s assume we have a default profile as such:

behat.yml
default:
 suites:
 default:
 filters:
 tags: "@runthisonlyondefault"

Now we want a profile that changes the tag which is to be run in the default
suite. We can add the profile and just override:

behat.yml
default:
 suites:
 default:
 filters:
 tags: "@runthisonlyondefault"

profile1:
 suites:
 default:
 filters:
 tags: "@runthisonlyonprofile1"

Or maybe we want to unset the tag filter for a profile:

behat.yml
default:
 suites:
 default:
 filters:
 tags: "@runthisonlyondefault"

profile1:
 suites:
 default:
 filters: ~

Environment Variable - BEHAT_PARAMS

If you want to set up configurable Behat settings, use the BEHAT_PARAMS
environment variable:

export BEHAT_PARAMS='{"extensions" : {"Behat\\MinkExtension" : {"base_url" : "https://www.example.com/"}}}'

You can set any value for any option that is available in a behat.yml file.
Just provide options in JSON format. Behat will use those options as defaults.
You can always override them with the settings in the project behat.yml file (it has higher priority).

Tip

In order to specify a parameter in an environment variable, the value must not exist in your behat.yml

Tip

NOTE: In Behat 2.x this variable was in URL format. It has been changed to use JSON format.

Global Filters

While it is possible to specify filters as part of suite configuration, sometimes you will want to
exclude certain scenarios across the suite, with the option to override the filters at the command line.

This is achieved by specifying the filter in the gherkin configuration:

behat.yml

default:
 gherkin:
 filters:
 tags: ~@wip

In this instance, scenarios tagged as @wip will be ignored unless the CLI command is run with a custom filter, e.g.:

vendor/bin/behat --tags=wip

Custom Autoloading

Sometimes you will need to place your features folder somewhere other than the
default location (e.g. app/features). All you need to do is specify the path
you want to autoload via behat.yml:

behat.yml

default:
 autoload:
 '': %paths.base%/app/features/bootstrap

If you wish to namespace your features (for example: to be PSR-1 compliant) you will need to add the namespace to the classes and also tell behat where to load them. Here contexts is an array of classes:

behat.yml

default:
 autoload:
 '': %paths.base%/app/features/bootstrap
 suites:
 default:
 contexts: [My\Application\Namespace\Bootstrap\FeatureContext]

Note

Using behat.yml to autoload will only allow for PSR-0.
You can also use composer.json to autoload, which will also
allow for PSR-4

Formatters

Default formatters can be enabled by specifying them in the profile.

behat.yml

default:
 formatters:
 pretty: true

Extensions

Extensions can be configured like this:

behat.yml

default:
 extensions:
 Behat\MinkExtension:
 base_url: http://www.example.com
 selenium2: ~

 Copyright 2016, Konstantin Kudryashov (@everzet).
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Behat documentation

 	User Guide

 	Configuration

Configuring Test Suites

We already talked about configuring multiple contexts for a single test
suite in a previous chapter. Now it is
time to talk about test suites themselves. A test suite represents a group of
concrete features together with the information on how to test them.

With suites you can configure Behat to test different kinds of features
using different kinds of contexts and doing so in one run. Test suites are
really powerful and behat.yml makes them that much more powerful:

behat.yml

default:
 suites:
 core_features:
 paths: [%paths.base%/features/core]
 contexts: [CoreDomainContext]
 user_features:
 paths: [%paths.base%/features/web]
 filters: { role: user }
 contexts: [UserContext]
 admin_features:
 paths: [%paths.base%/features/web]
 filters: { role: admin }
 contexts: [AdminContext]

Suite Paths

One of the most obvious settings of the suites is the paths
configuration:

behat.yml

default:
 suites:
 core_features:
 paths:
 - %paths.base%/features
 - %paths.base%/test/features
 - %paths.base%/vendor/.../features

As you might imagine, this option tells Behat where to search for test features.
You could, for example, tell Behat to look into the
features/web folder for features and test them with WebContext:

behat.yml

default:
 suites:
 web_features:
 paths: [%paths.base%/features/web]
 contexts: [WebContext]

You then might want to also describe some API-specific features in
features/api and test them with an API-specific ApiContext. Easy:

behat.yml

default:
 suites:
 web_features:
 paths: [%paths.base%/features/web]
 contexts: [WebContext]
 api_features:
 paths: [%paths.base%/features/api]
 contexts: [ApiContext]

This will cause Behat to:

	Find all features inside features/web and test them using your
WebContext.

	Find all features inside features/api and test them using your
ApiContext.

Note

%paths.base% is a special variable in behat.yml that refers
to the folder in which behat.yml is stored.

Path-based suites are an easy way to test highly-modular applications
where features are delivered by highly decoupled components. With suites
you can test all of them together.

Suite Filters

In addition to being able to run features from different directories,
we can run scenarios from the same directory, but filtered by specific
criteria. The Gherkin parser comes bundled with a set of cool filters
such as tags and name filters. You can use these filters to run
features with specific tag (or name) in specific contexts:

behat.yml

default:
 suites:
 web_features:
 paths: [%paths.base%/features]
 contexts: [WebContext]
 filters:
 tags: @web
 api_features:
 paths: [%paths.base%/features]
 contexts: [ApiContext]
 filters:
 tags: @api

This configuration will tell Behat to run features and scenarios
tagged as @web in WebContext and features and scenarios
tagged as @api in ApiContext. Even if they all are stored
in the same folder. How cool is that? But it gets even better,
because Gherkin 4+ (used in Behat 3+) added a very special role
filter. That means, you can now have nice actor-based suites:

behat.yml

default:
 suites:
 user_features:
 paths: [%paths.base%/features]
 contexts: [UserContext]
 filters:
 role: user
 admin_features:
 paths: [%paths.base%/features]
 contexts: [AdminContext]
 filters:
 role: admin

A Role filter takes a look into the feature description block:

Feature: Registering users
 In order to help more people use our system
 As an admin
 I need to be able to register more users

It looks for a As a ... or As an ... pattern and guesses its
actor from it. It then filters features that do not have the expected
actor from the set. In the case of our example, it basically means that
features described from the perspective of the user actor will
be tested in UserContext and features described from the
perspective of the admin actor will be tested in AdminContext.
Even if they are in the same folder.

While it is possible to specify filters as part of suite configuration,
sometimes you will want to exclude certain scenarios across the suite, with the
option to override the filters at the command line.

This is achieved by specifying the filter in the gherkin configuration:

behat.yml

default:
 gherkin:
 filters:
 tags: ~@wip

In this instance, scenarios tagged as @wip will be ignored unless the CLI
command is run with a custom filter, e.g.:

vendor/bin/behat --tags=wip

Tip

More details on identifying tests can be found in the chapter
Identifying Tests.

Suite Contexts

Being able to specify a set of features with a set of contexts for
these features inside the suite has a very interesting side-effect.
You can specify the same features in two different suites being tested
against different contexts or the same contexts configured differently.
This basically means that you can use the same subset of features to
develop different layers of your application with Behat:

behat.yml

default:
 suites:
 domain_features:
 paths: [%paths.base%/features]
 contexts: [DomainContext]
 web_features:
 paths: [%paths.base%/features]
 contexts: [WebContext]
 filters:
 tags: @web

In this case, Behat will first run all the features from the features/
folder in DomainContext and then only those tagged with @web in
WebContext.

Tip

It might be worth reading how to execute a specific
suite or
initialize a new
suite

 Copyright 2016, Konstantin Kudryashov (@everzet).
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Behat documentation

Cookbooks

	Integrating Symfony2 with Behat
	Installing Behat in your Symfony2 Project

	Initialising Behat

	Installing and Enabling Symfony2 Extension

	Accessing Application Services in Contexts

	Using KernelDriver with your Behat Suite

	Accessing Contexts from each other

 Copyright 2016, Konstantin Kudryashov (@everzet).
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Behat documentation

 	Cookbooks

Integrating Symfony2 with Behat

Symfony2 is a Web Application Framework [http://symfony.com/] that can be easily integrated and used seamlessly with Behat 3.
As a prerequisite for this cookbook you need to have working Symfony2 application.

In this cookbook we will cover:

	Installing Behat dependency with Composer.

	Initialising Behat suite.

	Installing and enabling Symfony2 extension.

	Accessing application services in contexts.

	Using Symfony2 test client as a Mink driver.

Installing Behat in your Symfony2 Project

Recommended way of managing Behat dependency in your project is to use Composer [https://getcomposer.org/)].
Assuming that you already have composer.json file in your project you only need to add one new entry to it and install.
It can be done automatically for you with this command:

$ php composer.phar require --dev behat/behat

Note

Note that we have used --dev switch for Composer.
It means that Behat will be installed as a require-dev dependency in your project, and will not be present in production.
For further information please check Composer documentation [https://getcomposer.org/doc/04-schema.md#require-dev].

Initialising Behat

After execution of this command you should see information about files initialised in your project,
and you should be able to write your first scenario.
In order to verify Behat initialisation you can just run following command:

$ vendor/bin/behat

Tip

If you don’t feel familiar with Behat enough please read Quick Start
first.

Installing and Enabling Symfony2 Extension

Great, you have a Behat suite working in your project, now it’s time to install Symfony2Extension [https://github.com/Behat/Symfony2Extension].
To do this you need to add another dependency, but in the same way we did it a while ago:

$ php composer.phar require --dev behat/symfony2-extension

Now it’s time to enable extension in your behat.yml file.
If it doesn’t exist just create such file in your project root and fill it with following content:

default:
 extensions:
 Behat\Symfony2Extension: ~

If this file already exists just change its contents accordingly.
From that point you should be able to run Behat and Symfony2 extension will be loaded and ready to work with.

Accessing Application Services in Contexts

The extension we have just installed detects the default Symfony configuration and allows
to use your application services in context classes. To make a service available in a context you need
to change your behat.yml configuration and tell the extension which services to inject:

default:
 suites:
 default:
 contexts:
 - FeatureContext:
 session: '@session'
 extensions:
 Behat\Symfony2Extension: ~

This configuration will try to to match the $session dependency of your FeatureContext constructor by injecting the session service into the context.
Be careful because if such a service does not exist or its name does not match, it will not work and you will end up with a Behat exception.

Using KernelDriver with your Behat Suite

Symfony2 has a build-in Test Client, which can help you with web acceptance testing, why not make use of it?
Especially because Behat has a Mink Extension [http://mink.behat.org] that makes those kind of testing even easier.

The advantage of using KernelDriver instead of standard Mink driver is that you don’t need to run web server in order to access a page.
Also you can even use Symfony Profiler [http://symfony.com/doc/current/cookbook/testing/profiling.html] and inspect your application directly!.
You can read more about test client in Symfony Documentation [http://symfony.com/doc/current/book/testing.html#your-first-functional-test].

If you don’t have Mink and MinkExtension yet, you can install those two with:

$ php composer.phar require --dev behat/mink
$ php composer.phar require --dev behat/mink-extension

In order to install BrowserKit Driver you need to execute following command:

$ php composer.phar require --dev behat/mink-browserkit-driver

Now you are only one step from being ready to make full use of Symfony2 extension in your project.
You need to enable extension in your behat.yml file as follows:

default:
 extensions:
 Behat\Symfony2Extension: ~
 Behat\MinkExtension:
 sessions:
 default:
 symfony2: ~

Et voilà! Now you are ready to drive your Symfony2 app development with Behat3!

 Copyright 2016, Konstantin Kudryashov (@everzet).
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Behat documentation

 	Cookbooks

Accessing Contexts from each other

When splitting the definitions in multiple contexts, it might be useful to
access a context from another one. This is particularly useful when migrating
from Behat 2.x to replace subcontexts.

Behat allows to access the environment in
hooks,
so other contexts can be retrieved using a BeforeScenario hook:

use Behat\Behat\Context\Context;
use Behat\Behat\Hook\Scope\BeforeScenarioScope;

class FeatureContext implements Context
{
 /** @var \Behat\MinkExtension\Context\MinkContext */
 private $minkContext;

 /** @BeforeScenario */
 public function gatherContexts(BeforeScenarioScope $scope)
 {
 $environment = $scope->getEnvironment();

 $this->minkContext = $environment->getContext('Behat\MinkExtension\Context\MinkContext');
 }
}

Caution

Circular references in context objects would prevent the PHP reference
counting from collecting contexts at the end of each scenarios, forcing
to wait for the garbage collector to run. This would increase the memory
usage of your Behat run. To prevent that, it is better to avoid storing
the environment itself in your context classes. It is also better to
avoid creating circular references between different contexts.

 Copyright 2016, Konstantin Kudryashov (@everzet).
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Behat documentation

Useful Resources

Integrating Behat with PHPStorm

More information on integrating Behat with PHPStorm can be found in this
blog post [http://blog.jetbrains.com/phpstorm/2014/07/using-behat-in-phpstorm/].

Behat cheat sheet

An interesting Behat and Mink cheat sheet [http://blog.lepine.pro/wp-content/uploads/2012/03/behat-cheat-sheet-en.pdf] developed by Jean-François Lépine [http://blog.lepine.pro]

 Copyright 2016, Konstantin Kudryashov (@everzet).
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	Behat documentation

Community

Behat has an amazing community around it.

The Behat community is friendly and welcoming. All questions and comments are valuable, so please come join the discussion!

There are a number of places to connect with community members at all experience levels.

	Have a question? Join us in our Gitter channel [https://gitter.im/Behat/Behat]

	Want to submit an issue or contribute a feature? Read about contributing in our contribution guide [https://github.com/Behat/Behat/blob/master/CONTRIBUTING.md]

	Want latest news from around community? Follow us on Twitter [https://twitter.com/behatphp]

 Copyright 2016, Konstantin Kudryashov (@everzet).
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	Behat documentation

Index

 Copyright 2016, Konstantin Kudryashov (@everzet).
 Created using Sphinx 1.2.2.

 _static/comment-close.png

_static/up.png

_images/formatter-pretty.png
+ behat —fornat pretty
Featurs: Sone feature
In order to
e
Tnesd ...

Scenarios # features/exanple. feature:s
Given some context ® FeatureContext::soneContext()
Lnen T do sonething # FeatureContext: i0osonething()

Sone exception
Then T shouid see ® FeatureContext: iShouldSse()

1 scenario (1 failed)
3 steps (1 passed, 1 skipped, 1 failed)
on.035s

_static/down-pressed.png

_static/ajax-loader.gif

_static/minus.png

_static/file.png

_static/plus.png

index.html

 Navigation

 		
 index

 		Behat documentation »

 © Copyright 2016, Konstantin Kudryashov (@everzet).
 Created using Sphinx 1.2.2.

_images/formatter-progress.png
(24 failed steps (1)

1. Sone exception
1In step “Hhen T do something'. * FeaturaContext: iDoSonething()
Fron scenario sex. * features/axanple. feature:s

1 scenario (1 failed)

3 steps (1 passed, 1 skipped, 1 failed)
on0.a32s

_static/comment-bright.png

_static/comment.png

search.html

 Navigation

 		
 index

 		Behat documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Konstantin Kudryashov (@everzet).
 Created using Sphinx 1.2.2.

_static/down.png

_static/up-pressed.png

